Penggunaan Zero Inflated Poisson Regression Dalam Pemodelan Pengaruh Penolong Persalinan Dan Pelayanan Nifas Terhadap Angka Kematian Ibu Di Propinsi Jawa Timur Tahun 2010
DOI:
https://doi.org/10.55316/hm.v4i2.61Keywords:
Keyword: Maternal Mortality, ZIP,delivery, postnatal.Abstract
The objective of this research was to model the factors that affecting maternal mortality rate in East Java in 2010 using ZIP. This was a non reactive research with profile of East Java Provincial Health Office in 2010 as the secondary data. The profile data were the results of health centers routine recapitulation from information and Research and Development Section on the whole regencies/cities in East Java. The unit analysis in this research was 950 health centers in the regions of East Java. The estimated results of ZIP log model parameter showed that childbirth assistance by health practitioners (?7 = -0.050655), postnatal care (?8 = 0.004500), while the estimated parameter logit model showed that occurrence probability of maternal mortality in East Java in 2010 was determined by the delivery helped by health practitioners (?7 = -0.0662297) and care during postnatal period (?7 = - 0.012563). Each increase in birth numbers helped by health practitioners would reduce maternal mortality by 0.9506 times. Postnatal services would influence about 1.0045 times on the increased risk of maternal death, the increased pregnancy complications, and also the increased of maternal mortality probability by 1.0045 times. The conclusion is that ZIP estimates the incidence of maternal mortality far better than other forms of discrete data with many 0 values on the dependent variable.
References
Andres, N. D. 2011. Pemodelan Penyakit Malaria Di Provinsi Jawa Barat Dengan Regresi Zero-Inflated Poisson. http://repository.upi.edu (sitasi tanggal 20 Maret 2012. pukul 20.09 WIB))
Arulita. 2007. Faktor-faktor Resiko yang Mempengaruhi Kematian Maternal (Studi Kasus di Kabupaten Cilacap). Tesis. FKM-Universitas Diponegoro Semarang.
Bohning, D., Dietz, E., Schlattmann, P. 2012. Zero Inflated Count Model and Their Applications in Public Health and Social Science. Paper dalam http://www.ipn.uni- kiel.de (sitasi tanggal 06 Maret 2012 pukul 08.03 WIB).
Dinkes Propinsi Jawa Timur. 2011. Profil Dinas Kesehatan Propinsi Jawa Timur tahun 2010. Surabaya: Dinkes Propinsi Jatim
Fauziah dan Sutejo. 2012. Keperawatan Maternitas Kehamilan. Vol 1. Jakarta: Kencana.
Famoye, F., & Singh, K.P. 2006, Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data. Journal of Data Science 4 (2006) 117-130
Hall, BB & Shen J. 2009. Robust Estimation For Zero Inflated Poisson Regression. Scandinavian Journal of Statistic, Blackwell Publishing Ltd.
Istiana, Nofita. 2011. Overdispersion (overdispersi) pada Regresi Poisson. Dalam http://www.nofitaistiana.wordpress.com (sitasi tanggal 18 Juni 2012 pukul 9.50 am).
Jansakul N dan Hinde, JP. 2001. Score Test For Zero Inflated Poisson Models. Journal Computational Statistics & Data Analysis. 40. 75-96.
Khoshgoftaar,T.M.,Gao.K, dan Szabo,R.M. 2004. Comparing Software Fault Prediciton Of Pure and Zero Inflated Poisson Regression Models. International Journal Of System Science. 36.(11). 705-715
Loeys, T., Moerkerke, B., De Smet, O., and Buysse, A. 2012. The Analysis of Zero Inflated Count Data: Beyond Zero-Inflated Poisson Regression. British Journal of Mathematical and Statistical Psychology, Vol 65. 163-180
Pamungkas, Dimas Haryo. 2003. Kajian Pengaruh Overdispersi dalam Regresi Poisson. Skripsi. Departemen Statistika, FMIPA. IPB.
Ridout, et all. 2001. A Score Test for Testing a Zero-Inflated Poisson Regression Model Against Zero-Inflated Negative Binomial Alternatives. Article first published online: 24 MAY 2004. Jurnal Biometrics. Volume 57, Issue 1, pages 219–223, March 2001.
Varney, H., Kriebs, J..M., Gegor, C.L. 2002. Buku Ajar Asuhan Kebidanan Edisi 4 Volume 1. Jakarta: EGC.
Widarjono, A. 2010. Analisis Statistika Multivariate Terapan. Yogyakarta: UPP STIM YKPN.
Xue, D.C., Ying, X.F. 2010. Model selection for zero-inflated regression with missing covariates. Computational Statistics and Data Analysis Journal Vol 55. p.765-773. Tahun 2011.










